skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Allasia, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Transient flows in stormwater systems can lead to damaging and dangerous operational conditions, as exemplified by geysering events created by the uncontrolled release of entrapped air pockets. Extreme rain and associated rapid inflows may result in air pocket entrapment, which causes significant changes in flow conditions and potentially geysering. Stormwater geysers have been studied in different experimental and numerical modeling studies, as well as from limited data gathered within real systems. However, there is still no complete understanding of geysering events, as stormwater system geometries vary considerably. Most past studies involved releasing air from an intermediate shaft, in which a significant fraction of the entrapped air may bypass the release. This work advances the understanding of geysering by considering uncontrolled air release through an upstream shaft or manhole. In such cases, the entire air pocket is released upon reaching the shaft, worsening the occurrence of geysering. Pressure and water level measurements were performed for various combinations of initial water pressure, trapped air pocket volume, and vertical shaft geometries, indicating the higher severity of these geysering events. The results obtained also corroborate previous studies in that the measured pressure heads were lower than the grade elevation. Future studies should include larger-scale testing and the representation of this geometry using CFD. 
    more » « less